Minimax-optimal Inference from Partial Rankings

نویسندگان

  • Bruce E. Hajek
  • Sewoong Oh
  • Jiaming Xu
چکیده

This paper studies the problem of rank aggregation under the Plackett-Luce model. The goal is to infer a global ranking and related scores of the items, based on partial rankings provided by multiple users over multiple subsets of items. A question of particular interest is how to optimally assign items to users for ranking and how many item assignments are needed to achieve a target estimation error. Without any assumptions on how the items are assigned to users, we derive an oracle lower bound and the Cramér-Rao lower bound of the estimation error. We prove an upper bound on the estimation error achieved by the maximum likelihood estimator, and show that both the upper bound and the Cramér-Rao lower bound inversely depend on the spectral gap of the Laplacian of an appropriately defined comparison graph. Since random comparison graphs are known to have large spectral gaps, this suggests the use of random assignments when we have the control. Precisely, the matching oracle lower bound and the upper bound on the estimation error imply that the maximum likelihood estimator together with a random assignment is minimax-optimal up to a logarithmic factor. We further analyze a popular rankbreaking scheme that decompose partial rankings into pairwise comparisons. We show that even if one applies the mismatched maximum likelihood estimator that assumes independence (on pairwise comparisons that are now dependent due to rank-breaking), minimax optimal performance is still achieved up to a logarithmic factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riffled Independence for Efficient Inference with Partial Rankings

Distributions over rankings are used to model data in a multitude of real world settings such as preference analysis and political elections. Modeling such distributions presents several computational challenges, however, due to the factorial size of the set of rankings over an item set. Some of these challenges are quite familiar to the artificial intelligence community, such as how to compact...

متن کامل

Computing Manipulations of Ranking Systems

Ranking systems are widely used by agencies to rank agents, for example U.S. News & World Report ranks colleges. Such rankings are prone to manipulation by the agency (e.g. USNews) for publicity, and also by the agents (e.g. colleges) to get a better rank. We analyze the algorithmic aspects of manipulation in linear ranking systems of m agents using n features. Computing optimal manipulation fo...

متن کامل

Optimal Allocation for Comparing Treatment E¤ects

Suppose the mean responses from m-1 treatment groups in an experiment are to be compared to the mean of a control group. A uniform allocation of observations over the treatment groups is then often used. However, other allocation schemes can give a better precision in the inference. This is particularly emphasised when the variances of the responses are di¤erent in di¤erent treatment groups. He...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

E cient Probabilistic Inference with Partial Ranking Queries

Distributions over rankings are used to model data in various settings such as preference analysis and political elections. The factorial size of the space of rankings, however, typically forces one to make structural assumptions, such as smoothness, sparsity, or probabilistic independence about these underlying distributions. We approach the modeling problem from the computational principle th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014